
Introduction to Artifact Evaluation

Neea Rusch
Augusta University

3 April 2024

What is an Artifact?

An artifact is a supplement that extends beyond a scientific paper and
supports the claims or results of that paper.

Artifact may contain: software, mechanized proofs, test suites, data sets,
benchmarks, video of a difficult/impossible-to-share system in use, hardware,
or any other artifact described in a paper.

An artifact captures a point-in-time matching the paper – it should be
packaged for long-term preservation to facilitate future research.

Introduction to Artifact Evaluation Neea Rusch 1 / 17

Artifact Evaluation Motivations

• Encourage and support authors to provide supplements to papers

• Help future researcher to build on and compare with previous work

• Validate claims and results presented in a paper

• Reward authors who put in effort to create useful artifacts

• Recognize the effort to release usable software systems

Introduction to Artifact Evaluation Neea Rusch 2 / 17

Papers with artifacts are recognized with badges.

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Kratos2: an SMT-Based Model Checker for

Imperative Programs?

Alberto Griggio1 and Martin Joná²1,2

1 Fondazione Bruno Kessler, Trento, Italy
griggio@fbk.eu

2 Masaryk University, Brno, Czechia
martin.jonas@mail.muni.cz

Abstract. This paper describes Kratos2, a tool for the veri�cation of
imperative programs. Kratos2 operates on an intermediate veri�cation
language called K2, with a formally-speci�ed semantics based on smt,
allowing the speci�cation of both reachability and liveness properties. It
integrates several state-of-the-art veri�cation engines based on sat and
smt. Moreover, it provides additional functionalities such as a �exible
Python api, a customizable C front-end, generation of counterexamples,
support for simulation and symbolic execution, and translation into mul-
tiple low-level veri�cation formalisms. Our experimental analysis shows
that Kratos2 is competitive with state-of-the-art software veri�ers on a
large range of programs. Thanks to its �exibility, Kratos2 has already
been used in various industrial projects and academic publications, both
as a veri�cation back-end and as a benchmark generator.

1 Introduction

We present Kratos2, a tool for the veri�cation of real-world imperative pro-
grams. Kratos2 is a complete rewrite and redesign of Kratos [17], improving and
extending it in multiple directions. First, Kratos2 introduces a simple yet expres-
sive intermediate language called K2, with a formally-speci�ed semantics based
on Satis�ability Modulo Theories (smt), which is parametric on the underlying
smt theory. K2 is expressive enough to capture most of the features of real-world
C programs, such as pointers, dynamic memory allocation, �oating-point data
types, and bit-precise semantics of bounded integers, which the old version of the
tool could not handle (being limited to C programs without pointers and recur-
sion, and in which C integers were interpreted as mathematical integers). Kratos2

comes with a separate C front-end c2Kratos that can translate C programs to
K2. Second, Kratos2 includes a variety of state-of-the-art veri�cation back-ends

? A. Griggio has been partly supported by the project �AI@TN� funded by the Au-
tonomous Province of Trento and by the PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU.
M. Joná² has been partly supported by the Czech Science Foundation grant GA23-
06506S.

Merchandiser: Data Placement on Heterogeneous
Memory for Task-Parallel HPC Applications with

Load-Balance Awareness
Zhen Xie

zhen.xie@anl.gov
University of California, Merced
Argonne National Laboratory

Jie Liu
jliu279@ucmerced.edu

University of California, Merced

Jiajia Li
jiajia.li@ncsu.edu

North Carolina State University

Dong Li
dli35@ucmerced.edu

University of California, Merced

Abstract
The emergence of heterogeneous memory (HM) provides
a cost-effective and high-performance solution to memory-
consumingHPC applications. Deciding the placement of data
objects on HM is critical for high performance. We reveal
a performance problem related to data placement on HM.
The problem is manifested as load imbalance among tasks
in task-parallel HPC applications. The root of the problem
comes from being unaware of parallel-task semantics and
an incorrect assumption that bringing frequently accessed
pages to fast memory always leads to better performance.
To address this problem, we introduce a load balance-aware
page management system, named Merchandiser. Merchan-
diser introduces task semantics during memory profiling,
rather than being application-agnostic. Using the limited
task semantics, Merchandiser effectively sets up coordina-
tion among tasks on the usage of HM to finish all tasks fast
instead of only considering any individual task. Merchan-
diser is highly automated to enable high usability. Evaluating
with memory-consuming HPC applications, we show that
Merchandiser reduces load imbalance and leads to an aver-
age of 17.1% and 15.4% (up to 26.0% and 23.2%) performance
improvement, compared with a hardware-based solution and
an industry-quality software-based solution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0015-6/23/02. . . $15.00
https://doi.org/10.1145/3572848.3577497

CCS Concepts: • Computer systems organization →
Heterogeneous (hybrid) systems; • Theory of compu-
tation → Parallel computing models; • Hardware →
Non-volatile memory.

Keywords: Data Placement, Heterogeneous Memory, Paral-
lel Computing, Load Balance

ACM Reference Format:
Zhen Xie, Jie Liu, Jiajia Li, and Dong Li. 2023. Merchandiser: Data
Placement on Heterogeneous Memory for Task-Parallel HPC Appli-
cations with Load-Balance Awareness. In The 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’23), February 25-March 1, 2023, Montreal, QC, Canada.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3572848.
3577497

1 Introduction
Many high-performance computing (HPC) applications are
becoming memory-consuming. For example, the density ma-
trix renormalization group (DMRG) [6, 77], a numerical al-
gorithm to obtain the low-energy physics of quantum many-
body systems, can consume 1.271 TB memory in a single
machine when solving the Hubbard 2D model at the scale of
320 × 320 [21, 46]. To meet memory requirements of those
applications, the big memory system is emerging. An ex-
ample of such a system is the Amazon EC2 High Memory
Instance built upon eight NUMA nodes and providing up to
12 TB memory [31]. The big memory system is often hetero-
geneous, which means multiple memory components with
different latency and bandwidth form the main memory.
HM raises a data placement problem. Because of small

capacity of fast memory and relatively worse performance
of slow memory, memory pages have to be allocated and
migrated between fast and slow memories, such that most
of memory accesses can happen in fast memory for high
performance. It has been shown that some HPC applications
can suffer from up to 5.7× performance loss (compared with
using a fast memory-only solution) with suboptimal data
placement on HM [61, 63, 67, 84].

204

A Retrospective Study of One Decade of Artifact Evaluations

Stefan Winter
LMU Munich

Munich, Germany
sw@stefan-winter.net

Christopher S. Timperley
Carnegie Mellon University

Pittsburgh, USA
ctimperley@cmu.edu

Ben Hermann
Technische Universität Dortmund

Dortmund, NRW, Germany
ben.hermann@cs.tu-dortmund.de

Jürgen Cito
TU Wien

Vienna, Austria
juergen.cito@tuwien.ac.at

Jonathan Bell
Northeastern University

Boston, MA, USA
j.bell@northeastern.edu

Michael Hilton
Carnegie Mellon University

Pittsburgh, PA, USA
mhilton@cmu.edu

Dirk Beyer
LMU Munich

Munich, Germany
dirk.beyer@sosy-lab.org

ABSTRACT

Most software-engineering research involves the development of

a prototype, a proof of concept, or a measurement apparatus. To-

gether with the data collected in the research process, they are

collectively referred to as research artifacts and are subject to arti-

fact evaluation (AE) at scientific conferences. Since its initiation in

the software-engineering community at ESEC/FSE 2011, both the

goals and the process of AE have evolved and today expectations

towards AE are strongly linked with reproducible research results

and reusable tools that other researchers can build their work on.

However, to date little evidence has been provided that artifacts

that have passed AE actually live up to these high expectations, i.e.,

to which degree AE processes contribute to AE’s goals and whether

the overhead they impose is justified.

We aim to fill this gap by providing an in-depth analysis of re-

search artifacts from a decade of software engineering (SE) and

programming languages (PL) conferences, based on which we re-

flect on the goals and mechanisms of AE in our community. In

summary, our analyses (1) suggest that articles with artifacts do

not generally have better visibility in the community, (2) provide

evidence how evaluated and not evaluated artifacts differ with re-

spect to different quality criteria, and (3) highlight opportunities

for further improving AE processes.

CCS CONCEPTS

• General and reference → Empirical studies; • Software and

its engineering→ Software post-development issues; • Informa-

tion systems→ Digital libraries and archives.

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549172

KEYWORDS

Research artifacts, Artifact evaluation, Open science, Reproduction,

Reuse, Long-term availability of software and data

ACM Reference Format:

StefanWinter, Christopher S. Timperley, BenHermann, JürgenCito, Jonathan

Bell, Michael Hilton, and Dirk Beyer. 2022. A Retrospective Study of One

Decade of Artifact Evaluations. In Proceedings of the 30th ACM Joint Euro-

pean Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE ’22), November 14ś18, 2022, Singapore,

Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3540250.3549172

1 INTRODUCTION

As reported in a 2016 Nature article, the scientific research commu-

nity faces a łreproducibility crisis.ž 70 % of the 1 576 scientists sur-

veyed by Nature (from various fields, including chemistry, physics,

earth and environmental science, biology, and medicine) reported

that they had tried and failed to reproduce another scientist’s exper-

iments [3]. Numerous conferences for computer science (including

the software-engineering field) organize artifact evaluations with

the goal to ensure reproducibility. Organizers assign badges based

on peer review to recognize authors’ efforts to make their tools

and datasets available and reusable, and integrate these artifacts

into publication processes. In the software community the artifact-

evaluation process started at ESEC/FSE in 2011 [15] 1, and has now

spread to become commonplace at most conferences in the area of

software engineering and programming languages as well as other

communities, including HCI, Communications, and Security.

As different communities have different requirements regarding

research artifacts, artifact-evaluation organizers use different eval-

uation methodologies to assess submissions and different incentive

mechanisms to encourage authors (and reviewers) to participate.

Research communitities invest a considerable amount of effort into

the development and implementation of the artifact-evaluation pro-

cesses. However, recent studies have shown that there are diverse

views on the part of both reviewers and authors [11, 13, 20]. In

particular, the tensions between high availability vs. high quality

1http://2011.esec-fse.org/cfp-artifact-evaluation (archive)

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

145

Introduction to Artifact Evaluation Neea Rusch 3 / 17

Historical Background

Insufficient respect paid to the artifacts that back papers.

Areas so centered on software, models, and specifications should want to
evaluate artifacts as part of the paper review process.

Not examining artifacts enables everything from mere sloppiness to, in
extreme cases, dishonesty.

More subtly, it also imposes a subtle penalty on people who take the trouble
to vigorously implement and test their ideas.

https://artifact-eval.org/motivation.html

Introduction to Artifact Evaluation Neea Rusch 4 / 17

https://artifact-eval.org/motivation.html

Historical Background

In 2011, Andreas Zeller, the program chair for ESEC/FSE, decided
to institute a committee to address this problem. Andreas asked
Carlo Ghezzi and Shriram Krishnamurthi to run this process.

Shriram had long wanted to create such a committee and call it
the “Program Committee” (ha, ha). However, not only is that name
taken, we also wanted to be open-minded to all sorts of artifacts
that are not programs […]. We therefore called this the Artifact
Evaluation Committee (AEC).

https://artifact-eval.org/motivation.html

Introduction to Artifact Evaluation Neea Rusch 5 / 17

https://artifact-eval.org/motivation.html

Artifact Evaluation Today

Software Engineering & Programming Languages
ICSE, ESEC/FSE, ASE, ECOOP, ISSTA, OOPSLA, POPL, PLDI, ICFP, SAS,
ESOP, TACAS, CAV, TSE, TOSEM, EMSE, TOPLAS…

Systems research
SOSP, USENIX ATC, EuroSys, FAST, OSDI, SC…

Security research
ACSAC, CHES, CCS, NDSS, USENIX Security, SysTEX, WOOT…

Introduction to Artifact Evaluation Neea Rusch 6 / 17

High-Level Workflow

Common

paper submission

paper accepted?

artifact submission

artifact decision

camera-ready paper

Alternative

paper submission artifact submission

paper decision artifact decision

paper accepted?

camera-ready paper

Introduction to Artifact Evaluation Neea Rusch 7 / 17

Artifact Evaluation Process

Time Step Responsible party

Artifact submission Authors
2–5 days Bidding AEC members

Artifacts assigned (usually 2–3) AEC chairs
1–2 weeks Phase 1: Kick the tires AEC members
1–2 weeks Author responses, possible fixes Authors
2–4 weeks Phase 2: Full review AEC members
3–7 days Discussion and badging decisions AEC members

Decisions announced AEC chairs

Expect an artifact to take on average 8h to review completely.

Introduction to Artifact Evaluation Neea Rusch 8 / 17

Badges

Artifacts are evaluated against badging criteria, in up to three categories
(available, evaluated, results validated). The current commonly applied
criteria is ACM Artifact Review and Badging policy v1.11.

1https://www.acm.org/publications/policies/artifact-review-and-badging-current

Introduction to Artifact Evaluation Neea Rusch 9 / 17

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Badges: Available

Available Author-created artifacts relevant to the pa-
per have been placed on a publicly accessible archival
repository2. A DOI or link to this repository along with
a unique identifier for the object is provided.

2Archival repositories: Zenodo (zenodo.org), Figshare (figshare.com), Software Heritage
(softwareheritage.org), Dagstuhl Artifacts Series (DARTS),…

Introduction to Artifact Evaluation Neea Rusch 10 / 17

https://zenodo.org
https://figshare.com
softwareheritage.org
softwareheritage.org
https://www.dagstuhl.de/en/publishing/series/details/DARTS

Badges: Artifacts Evaluated

Two levels are distinguished, only one of which should be applied.

Functional The artifacts associated with the research
are found to be documented, consistent, complete,
exercisable, and include appropriate evidence of veri-
fication and validation.

Reusable The artifacts have all the qualities of Func-
tional level, but, in addition, they are very carefully
documented and well-structured to the extent that
reuse and repurposing is facilitated.

Introduction to Artifact Evaluation Neea Rusch 11 / 17

Badges: Results Validated

The main results of the paper have been successfully obtained by a person
or team other than the author.

Reproduced The main results of the paper have been
obtained in a subsequent study by a person or team
other than the authors, using, in part, artifacts pro-
vided by the author.

Replicated The main results of the paper have been
independently obtained in a subsequent study by a
person or team other than the authors, without the
use of author-supplied artifacts.

Introduction to Artifact Evaluation Neea Rusch 12 / 17

Artifact Evaluators

AEC members are usually senior graduate students, postdocs, or recent PhD
graduates.

Among researchers, experienced graduate students are often in the best
position to handle the diversity of systems expectations that the AEC will
encounter.

Graduate students represent the future of the community, so involving them
in the AEC process early will help push this process forward.

https://pldi24.sigplan.org/track/pldi-2024-pldi-research-artifacts

Introduction to Artifact Evaluation Neea Rusch 13 / 17

https://pldi24.sigplan.org/track/pldi-2024-pldi-research-artifacts

Benefits of Participating in AECs

• Early experience in peer review process, learn how to write reviews

• Early access to cutting-edge works at top conferences

• Gain exposure to new research topics

• Develop intuition for what a top-conference publication requires

• Learn the artifact process and improve quality of own artifacts

• Start recognizing researchers, research trends, etc.

• Service experience for your CV

Introduction to Artifact Evaluation Neea Rusch 14 / 17

General Artifact Preparation Tips

For all artifacts:

• Make artifact claims explicit in the artifact readme

• Try prepare a push-button/single command evaluation

• The artifact should support regenerating experimental claims3

• Remember a license

3If paper contains tables or figures of measurements, include scripts to regenerate them.

Introduction to Artifact Evaluation Neea Rusch 15 / 17

General Artifact Preparation Tips

For artifacts requiring high computational resources:

• Prepare a partial (small/short) evaluation + full evaluation

• Try include critical functionality in the partial evaluation

• Give time estimates of all long latency tasks

• Provide static files with full result details for manual inspection

Generally: need evidence to show the artifact produces claimed results.
Sometimes, video or alternative approaches are helpful to demonstrate this.

Introduction to Artifact Evaluation Neea Rusch 16 / 17

General Artifact Preparation Tips

Artifact should be useful long-term (10 years+):

• Provide a container or VM that captures the expected environment

• Detail software dependencies including versions

• Make artifact self-contained: avoid external references that may change
or get deleted

Introduction to Artifact Evaluation Neea Rusch 17 / 17

