Certifying Complexity Analysis

Clément Aubert!, Thomas Rubiano?,

Neea Rusch!, Thomas Seiller?3

1 Augusta University
2 LIPN - Laboratoire d'Informatique de Paris-Nord
3 CNRS - Centre National de la Recherche Scientifique

CogPL 2023 21 January 2023

C =

X1
X1

X2 + X3,;
X1 + X1

2/29

(@)
If
>
-
]

X2 + X3;
X1 + X1

<
—
I

/

[C (z1, 22, x5 ~ 2, b, x%) implies 2] < 229 + 225 and 5 < 29 and z§ < 3.

2/29

"

C = X1 := 1;
loop X2 {
X1 := X1 + X1

3/29

"

C = X1 := 1;
loop X2 {
X1 := X1 + X1

"

[C 1(x1, 20 ~ 2!, x%) implies o] < 2%2 and af, < z5.

3/29

We present a plan to formalize a complexity analysis technique
that guarantees imperative program input variable values have
polynomial growth bounds.

4/29

mawp-Flow Analysis?

Tracks how each variable depends on other variables.

Flows characterize dependencies:

0 - no dependency

m — maximal weaker
w — weak polynomial

p — polynomial stronger

Apply inference rules to program statements.

Collect analysis result in a matrix.

INeil D. Jones and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In:

ACM Trans. Comput. Log. 10.4 (Aug. 2009), 28:1-28:41. pOI: 10.1145/1555746.1555752.
5/29

https://doi.org/10.1145/1555746.1555752

Initial state

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

N X1 X2 X3

else { X1 | m 0 0
X3 = X3 + X2;

. ¥ 20 m 0

while (X1 < 0){ X3 | 0 0 m

X1 = X2 + X3,

6/29

Step 1 of 6

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

} X1 X2 X3

else { X1|m 0
X3 = X3 + X2;

) X210 m 0

while (X1 < 0){ X3 | 0 0 m
X1 = X2 + X3;

}

7/29

Step 2 of 6

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

} X1 X2 X3

else { X1|{m O 0
X3 = X3 + X2;

) X210 m |p

while (X1 < 0){ X3 | 0 0 m

X1 = X2 + X3,

8/29

Step 3 of 6

void main(int X1, int X2,

X3
}
else {
X3
}

if (X1 < X2) {

X1 + X1;

X3 + X2;

while (X1 < 0){

X1

X2 + X3;

int X3){

X1 X2 X3
XX|m 0 |p
X210 m |p
X310 0 m

9/29

Step 4 of 6

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

) | X1 x2 X3

else { X1 | m 0 0
X3 = X3 + X2;

) X2 (fw m O

while (X1 < 0){ X3 | |w 0 m

}

10/29

Step 5 of 6

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

} X1 X2 X3

else { Xt |{lm O 0
X3 = X3 + X2;

) X2 (flw m 0

while (X1 < 0){ X3 | |w 0 m

X1 = X2 + X3,

Side condition: Vi, M, = m and Vi,j,Mi*j #p

11/29

Step 6 of 6

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

} X1 X2 X3

else { X1 | |p 0 D
X3 = X3 + X2;

} X2||lp m p

while (X1 < 0){ XB3ljlw 0 m

X1 = X2 + X3,

12/29

E2
FXiVi EXjVe EXisVi EXjiVe o,

Fe: {"| Xiecvar(e)} — .
i F XixXj: pV1 @ Va F XixXj : Vi @ pVa

13/29

Alternative choice at step 4

void main(int X1, int X2, int X3){
if (X1 < X2) {
X3 = X1 + X1;

) | X1 x2 X3

else { X1|{m O 0
X3 = X3 + X2;

) X2 m 0

while (X1 < 0){ X3 0 m

X1 = X2 + X3;

Side condition: Vi, M, = m and Vi,j,Mi*j #p
14/29

The result of the analysis is an “mwp-bound”.

An mwp-bound us a number-theoretic expression of form
max(Z, poly, (¢)) + poly, (%) where poly; and polys are honest polynomials.

An honest polynomial build up from constants in N and variables by applying
operators + (addition) and x (multiplication).

15/29

TODO: [a mechanical proof of the mwp-analysis technique, as defined in
the original paper, in Coq.

Requires defining and proving:

1. programming language under analysis,

2. mathematical framework (matrices, vectors, mwp-bound, ...),
3. typing system, and
4

. the lemmas and proofs from the paper.

16/29

Programming Language

The language is Imp with added 1oop command.

Variable X1 | Xo | X3] ...
Expression X|le+te|exe
Boolean Exp. e = e, e < e, etc.

Commands skip | X := e | C;C | loop X {C} |
if b then C else C | while b do {C}

17/29

" Programming
Logical Language
Foundations Foundations

2Benjamin C. Pierce et al. “Logical Foundations”. In: Software Foundations. Ed. by
Benjamin C. Pierce. Version 6.2. Vol. 1. 2022. URL: http://softwarefoundations.cis.upenn.edu.
3Benjamin C. Pierce et al. “Programming Language Foundations”. In: Software Foundations. Ed. by

Benjamin C. Pierce. Version 6.2. Vol. 2. 2022. URL: http://softwarefoundations.cis.upenn.edu.
18/29

http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu

Mathematical Framework

Mdthematical
ComPonents

Requires:
® Matrices, vectors, semi-ring
e Matrix operations: add, multiply, equivalence,
fixpoint

® mwp-bound, honest polynomials

4Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, 2022. DOI:
10.5281/zenodo.7118596.

19/29

https://doi.org/10.5281/zenodo.7118596

Typing System

e Connects the language and mathematical
framework.

e Defined based on the inference rules.

http://adam.chlipala.net/frap/

O

achlipala/frap

Formal Reasoning About Programs

20/29

http://adam.chlipala.net/frap/

Inference Rules

Xy o

Fe: {¥|Xiecvar(e)} E2

Fe:V A

FXj=e:1dV

FCl: My FC2: M c
FC1; C2: My ® Mo

FCl: M7 FC2: My
= if b then C1 else C2: M1 & M>

FXi:Vi FXj: Vs EFXi:Vi EXj:V»

F XixXj: pV1 @ Vs F XixXj : V1 @ pV2

FC: M L
Floop X, {C}: M* & {P— j| 3i, M; = p}

; L —
Vi, M, =m

FC: M
I while b do {C} : M~

Vi, M}, = m and Vi,j,Mi*j #p

21/29

Lemmas and Theorems

The soundness theorem is the main achievement of the paper.

Theorem: Soundness

FC: M implies FEC: M.

® |- C: M means the calculus assigns the matrix M to the command C.
® Relation F C: M holds iff there exists a derivation in the calculus.

e Command C is derivable if the calculus assigns at least one matrix to it.

22/29

Multiple proofs are about the correctness of inference rules, e.g., the loop rules.
“These proofs are long, technical and occasionally highly nontrivial.”®

Theorem: 7.18
If = C: M and M;; = m for all 7, then

E loop X{C}: M* @ {} —j| i [M5 = p]}

Theorem: 7.19

If £ C: M and Mj = m for all ¢, and M # p for all 4,7, then
F while b{C}: M*.

5Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”, p. 2.

23/29

Main Contribution

A certified complexity analysis technique.

® Proof that the analysis technique is sound.
® Proof that a positive result obtained by analysis is correct.

® Enables obtaining a certified “growth bound” on input variable values.

24 /29

Timeline and Progress

Task 1 Task 2 Task 3 Task 4

P Lhcunce

Here @ Proof task @ Resource

25/29

Discussion
Inspired by POPL'23 Z

A scientific contribution must be novel, useful, and challenging.

26 /29

A scientific contribution must be novel, useful, and challenging.

“To me, Coq is just another programming language, and formalization
requires high effort ... Theoretically, the analysis is not very interesting,
..., practically, it is not good for analysing realistic programs.”

27/29

|A scientific contribution must be novel, useful, and challenging.

“[T]here’s some related recent work in Easycrypt since complexity is
crucial for cryptography. . . It would be great if your approach could work
for embedded imperative language, as it would provide functionality
similar to easycrypt in Coq.”

28/29

Possibilities

* Our previous work adjusted analysis to makes it practical and fast®
® Proof shows technique is correct, but not fast.
® |t should be possible to combine those two results.

nrusch@augusta.edu

“Looks like a great proposal! ... it should lead to interesting discussion.”

6Clément Aubert et al. “mwp-Analysis Improvement and Implementation: Realizing Implicit
Computational Complexity”. In: FSCD 2022. Vol. 228. LIPlcs. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2022, 26:1-26:23. DOI: 10.4230/LIPIcs.FSCD.2022.26.

29/29

https://doi.org/10.4230/LIPIcs.FSCD.2022.26

References

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “mwp-Analysis Improvement and Implemen-
tation: Realizing Implicit Computational Complexity”. In: FSCD 2022. Vol. 228. LIPlcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2022, 26:1-26:23. DOI: 10.4230/LIPIcs.FSCD.2022.26.

Jones, Neil D. and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In: ACM Trans.

Comput. Log. 10.4 (Aug. 2009), 28:1-28:41. DOI: 10.1145/1555746.1555752.
Mahboubi, Assia and Enrico Tassi. Mathematical Components. Zenodo, 2022. DOI: 10.5281/zenodo.7118596.
Pierce, Benjamin C., Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin

Hritcu, Vilhelm Sjoberg, Andrew Tolmach, and Brent Yorgey. “Programming Language Foundations”. In:

Software Foundations. Ed. by Benjamin C. Pierce. Version 6.2. Vol. 2. 2022. URL: http://softwarefoundations.

cis.upenn.edu.

Pierce, Benjamin C., Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin

Hritcu, Vilhelm Sjoberg, and Brent Yorgey. “Logical Foundations”. In: Software Foundations. Ed. by Benjamin C.

Pierce. Version 6.2. Vol. 1. 2022. URL: http://softwarefoundations.cis.upenn.edu.

https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.5281/zenodo.7118596
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu

