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Static program analysis fuels software development by providing automated
tools for evaluating various program properties without execution. Static ana-
lyzers are more powerful that tests, because tests focus on specific instances of
input-output behavior, while the former evaluates program properties under all
possible executions. Static analyzers can be designed for two distinct purposes:
as powerful debuggers, to discover elusive programming errors and to suggest
improvements to the source code; or as sophisticated verifiers, to guarantee
with utmost rigor that the analyzed property holds. This choice impacts the
analyzer design: debuggers must, for usability purposes, minimize the rate of
false alarms; verifiers must establish with absolute certainty that if no alarms
are raised, then the analyzed property is satisfied. Through this functional-
ity, static program analysis delivers the mandatory tools for improving safety,
reliability and performances of software.

The ability to analyze various program properties in an automated way is clearly
highly desirable; however, the task of designing and developing such analyzers is
extremely challenging. There are numerous difficulties: evaluating e.g. memory
accesses and loops is demanding because memory access patterns and iterations
counts may not be known statically. Then, the soundness of the analysis must
be proven to ensure the correctness of the result, while also ensuring correctness
of its implementation. What is worse, Rice’s theorem proves that any non-trivial
semantic property in undecidable. The quest of bringing to life these powerful
analysis tools is therefore a simultaneous pursuit of assessing program properties
while skirting around the edge of decidability—what an exciting landscape.

Given the general character of the problem, numerous distinct approaches to
static program analysis exist. These techniques differ by the choice properties
they evaluate, and can successfully answer different questions about various
classes of programs, but no single approach handles all cases, thus there is
continuous room for improvement and need for complementary systems. This
presentation is concerned with a specific flavor of analysis, particularly lever-
aging Implicit Computational Complexity (ICC) theory: ICC offers a unique
approach to resource analysis by “embedding” in a program itself syntactical cri-
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teria that in return provides some guarantee of its runtime behaviour, typically
expressed in terms of complexity. It is thus possible to establish guarantees of
program resource usage or discover opportunities for optimizing those behaviors.
While precisely determining the complexity of all programs is impossible, these
techniques are still widely applicable to a large range of programs.

The rest of this document is organized as follows: the next section gives a
brief description of the terminology used in the remainder of this document;
it is meant to assist a reader unfamiliar with the bolded terms, and may be
skipped without loss of continuity by those already familiar with the terms.
The subsequent section will discuss the open problem in the specified domain,
as they relate to the selected readings, and offer pathways of potential future
exploration. Reader who is unfamiliar with the selected readings, may refer to
the appendix for summaries, which are included for convenience.

1 Conceptual preliminaries
Implicit Computational Complexity (ICC) is a subfield in computational
complexity theory, that unlike the traditional approach, is not concerned with
a specific computational model; rather it considers implicit characterizations
of complexity classes by placing various syntactic criteria on a program, which
in turn guarantees some semantic properties about it, usually resource usage
bounds. Numerous distinct program analysis systems exist, mainly revolving
around type checking, data flow, or performing checks on computed values
(Moyen 2017). An interesting general description of ICC has been given as
follows: let 𝐿 be a programming language, 𝐶 a complexity class, and [[𝑝]] the
function computed by program 𝑝. Then the task is to find a restriction 𝑅 ⊆ 𝐿,
such that the following equality holds: {[[𝑝]] | 𝑝 ∈ 𝑅} = 𝐶. The variables 𝐿,
𝐶 and 𝑅 are the parameters that vary greatly between different ICC systems
(Péchoux 2020). The ICC approach to program analysis has several benefits:
it drives better understanding of complexity classes, introduces new and often
orthogonal analysis techniques, and offers a prospective avenue for realizing
complexity analysis. By embedding in the program itself a restriction, by which
a complexity bound will be guaranteed, the effort of satisfying that restriction
is raised upstream to the programmer: if the restriction is maintained, then the
bound will be maintained. This implicit character leads to a natural approach
to complexity analysis: the developer can focus on writing their program and
concurrently obtain guarantees of its behavior, and this works provided that
the restriction is not excessively limiting in expressing algorithms in practice
(Moyen 2017).

Static program analysis is a subfield of formal methods, focusing on evaluating
program properties without executing its source code (as opposed to dynamic
analysis, where runtime traces are analyzed). It is typically performed using
automated tools and numerous techniques exist. One popular method is ab-
stract interpretation: a mathematically rigorous framework, that relies on
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abstract domains to evaluate program behaviors, and offers guarantees that the
information gathered about a program is a safe approximation to its semantics.
Amortized analysis is a method for complexity analysis, where cost is associ-
ated with resource usage of interest, then averaged over an execution sequence.
The relationship between these methods and ICC can be expressed in the po-
tential of the latter to introduce complementary techniques and solve problems
that are not efficiently solvable by these alternative approaches.

Compilers transform source program, written in one programming language,
into another target program, in another language, where the target is typi-
cally lower-level assembly or machine code to create an executable program.
Classic compiler architecture consists of three parts: front-end, middle-end and
back-end; which increases their ability to support multiple pairings of source
languages and target CPU architectures. During compilation, the transforma-
tion of program proceeds over several passes, during which source program is
expressed as various kinds of intermediate representation (IR): these are
data structures and forms of code that ease further processing and optimiza-
tions. Static single assignment (SSA) form is a property of some IRs, where
each variable is assigned a value exactly once, which simplifies and improves
performing certain optimizations during compilation.

Formal verification of software relies on mathematical foundations for the
strongest levels of assurance and correctness. The intuitive motivation for veri-
fying tools such as static analyzer, is to obtain guarantees of the correctness of
the result. Interactive theorem provers assist in this critical task of proving a
program satisfies a formal specification of its behavior. Coq is a proof assistant
for expressing mathematical assertions: it mechanically checks proofs of these
assertions and extracts a certified program from the constructive proof. The
CompCert C verified compiler is a high-assurance, industry-grade, realistic

compiler for almost all of C language (ISO C 2011), guaranteed to preserve
program semantics during compilation and proven correct in Coq.

2 How applications of ICC can help drive
advancements in static program analysis

Current state of the art has established, first through Verasco, the suitability of
abstract interpretation as a technique for creating a formally verified static ana-
lyzers for guaranteeing the absence of runtime errors (Jourdan et al. 2015). The
result is particularly impressive as it pairs with CompCert to create a certified
compilation pipeline, such that the guarantees established by the analyzer carry
over to the executable code. However, at the time of its publication, the tool
exhibited notable latency in analyzing short benchmark programs, hinting at
significant issues in its usability, and further development of the tool has since
then ceased in perpetuity. Currently, formally verified static analysis of various
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program properties, particularly of complexity1, remains an open problem.

Implicit Computational Complexity offers a potential solution for extending this
current state of the art. Take for example the flow calculus of mwp-bounds: it of-
fers a computation method for evaluating the growth of program variable values,
such that the values computed by an imperative program are guaranteed to be
bounded by polynomials in the program’s inputs if the program has a satisfying
derivation (Jones and Kristiansen 2009). This technique is attractive because
it is inherently compositional and is not concerned with termination or exact
iteration counts, thus enabling efficient analysis and avoiding issues alternative
techniques must address. A recent development showed that it is possible to also
obtain tight bounds on a similar class of imperative programs, once it is known
that their values are polynomially bounded (Ben-Amram and Hamilton 2020).
These techniques are, however, purely theoretical in presentation and designed
for simplified imperative languages without memory accesses, data structures,
classes, etc.; void of the kind of richness one expects in a modern programming
language. This hinders their application, limits the spread of these ideas, and
the true power of these systems remains under-explored.

Some insight to explain why ICC techniques have remained obscure in static an-
alyzers can be obtained from the habilitation thesis of Jean-Yves Moyen (Moyen
2017). A methodology is plausible only if it captures enough natural algorithms:
this raises an issue for many systems as their construction is inherently restric-
tive in nature. The classical ICC systems, such as the mwp-bounds, provide
sound but incomplete criteria for a given property, which has the effect that the
result can be trusted to be correct, but some “good” programs may be rejected
by the analysis. This leads to an under-approximation of programs that fit a
complexity class, and the aim is then to make that under-approximation as large
as possible. Beyond these theoretical challenges, realizing the techniques is a
separate matter, and currently only a few practical ICC-based implementations
exist.

Compilers present a suitable target for introducing ICC-based analyses, because
they already perform program transformations from source code to intermediate
representations. The three-part architecture has the opportunity that an analy-
sis performed at the middle-end could be accessible to all languages supported
by the compiler front-end. The middle-end IRs still maintain structural infor-
mation, but are sufficiently reduced in richness to fit the syntax of ICC systems.
The very first attempt to bring these two ideas together was a compiler pass
designed to perform loop optimizations based on quasi-invariants (Moyen, Ru-
biano, and Seiller 2017). This technique relies on an SSA form IR, but given the
introduction of a formally verified middle-end for CompCert (Barthe, Demange,
and Pichardie 2014), all the necessary pieces are in place to further explore this
environment.

1A few preliminary related results exists, e.g., Heraud and Nowak and Férée et al. but
these are not static analyzers.
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2.1 Open problems for further exploration
The proposed ideas for further study are founded on the extension of the pre-
viously presented topics and centered on applications of ICC-based techniques,
along the following 3 axes.

1. Application. The current world of static complexity analysis is best repre-
sented by tools such as RaML, focusing on functional languages and implemented
using amortized analysis; ComplexityParser for Java, and AProVE for evaluat-
ing termination and complexity of term rewrite systems. While these tools
support many features, there are opportunities to take static analysis further
using ICC-based methods in several ways: performing multivariate complexity
analysis, evaluating resource usage in derived cases (error growth, energy usage,
etc.), and using those results to discover program optimizations (loop transfor-
mations, parallelization, etc.); cases which are not supported by the other tools.
It is probable that exploration of applications of ICC system will also be fruitful
in assessing the powerfulness and richness of these systems and help spread ICC
theories to wider communities.

2. Compiler integration. Based on the early existing works and the reason-
ing presented previously, compiler integration is a viable avenue for performing
various ICC-based analyses, at various intermediate passes and IRs. This is a
particularly intriguing opportunity because of the reach compiler integration in-
troduces, for example, a resource-sensible LLVM would impact all its supported
languages. However, the theoretical ICC-systems are void of considerations for
complex constructs such as memory accesses, yet those constructs are inherently
present in IRs. Exploring this direction will push forward the need to develop
analysis systems capable of handling rich and realistic programming languages.

3. Formal verification. As demonstrated by Verasco, a formally verified
static analyzer is achievable. Verifying the analyzer itself is desirable, because
otherwise guarantee of the correctness of its implementation cannot be obtained,
which lowers the level of trust that can be placed on the computed result. ICC
systems such the mwp-analysis, which is based on inference rules of data flow,
provide an amiable pathway for extending in this direction. Some questions of
interest include verification of the original technique in Coq; then its integration
into a verified compiler such as the SSA-version of CompCert to ensure the result
of the analysis carries to the executable program; and evaluating the impact of
the SSA form on the analysis itself, since the technique uses matrices whose size
depends on number of variables, and it is unclear whether it remains tractable
when carried out on programs expressed in SSA form.

Each of the presented axes is individually hard, but they are also interesting,
because they are compositional: one could conceivably form a very hard prob-
lem by exploring the application of ICC systems on rich languages, through
an implementation verified with a proof assistant, and integrating that into a
certified compiler. These directions are also unconventional in a sense that ICC
community has historically focused heavily on theoretical aspects and not on
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their applications. Bringing those theories to life will require great effort, but
the necessary developments for doing so are in place. It is conceivable that
results in implementation will in return drive further enhancements on the theo-
retical side. On long-term basis, advancements in this domain are significant for
the continued need to ease the development of performant and correct software,
while the programs themselves are getting increasingly more complex.
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4 Appendix: Paper Summaries
4.1 A Flow Calculus of mwp-Bounds for Complexity

Analysis
(Jones and Kristiansen 2009)

Paper presents an automatable computational method for certifying that the
values computed by an imperative program will be bounded by polynomials
in the program’s inputs. This method drives better understanding of the rela-
tionship between syntactical constructions in programming languages and the
computational resources required to execute programs. A major contribution is
a syntactical proof calculus, the mwp-calculus, which allows formal derivations
of true statements about programs.

The calculus uses 2-dimensional matrices that record data flows between vari-
ables as commands are executed. There are 3 different types of flows: m (maxi-
mum), w (weak polynomial), and p (polynomial); which characterize the impact
each variable has onto another. The mwp-bounds of a program are then obtained
from the matrix. Certain patterns of data-flow guarantee polynomial bounds
on the computed values while others do not.

For program 𝐶 and matrix 𝑀 , there exists a semantic “growth bound” relation,
⊧ 𝐶 ∶ 𝑀 , if and only if every value computed by 𝐶 is bounded by polynomial in
inputs. This semantic relation is undecidable, but a corresponding provability
relation, ⊢ 𝐶 ∶ 𝑀 , holds if and only if there exists a derivation in the calculus
where 𝐶 ∶ 𝑀 is the bottom line. The paper’s main achievement is a soundness
theorem proving ⊢ 𝐶 ∶ 𝑀 implies ⊧ 𝐶 ∶ 𝑀 . The derivability problem is NP-
complete.

The analyzed syntax is restricted to a simple imperative language consisting of
variables, Boolean expressions, expressions, and commands. Analysis of arrays,
pointers, classes, recursion, inductive data types, etc. is out of scope. Main
open questions raised by the authors are evaluating the power of this method
and its possible extensions to support richer languages.

4.2 A Formally-Verified C Static Analyzer
(Jourdan et al. 2015)

Paper describes the design and implementation of Verasco: a static analyzer
based on abstract interpretation, that establishes absence of runtime errors in
ISO C99 programs, and is proven correct using the Coq proof assistant. It
is compatible with CompCert compiler, such that guarantees established by
Verasco carry over to the compiled code.

When using static analysis for program verification, soundness of the analysis
is paramount: when no errors are reported, then it must be the case that no
errors exist in the analyzed program and all possible execution paths have been
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accounted for. However, analyzers themselves may contain bugs therefore en-
suring soundness necessitates a mechanical proof. Mechanical soundness proofs
is not a new idea, but applying them to abstract interpretation or dataflow
analysis is less developed. Compared to previous works, the richness of ana-
lyzed language and sophistication of the analysis make Verasco a quantitative
increment from previous works.

Verasco uses CompCert’s front-end to produce C#minor IR, which is then an-
alyzed. The architecture consists of an abstract interpreter, state abstraction
layers, and an extendable layer of numerous, cross-communicating abstract do-
mains to keep track of various program properties (array bounds, memory ac-
cesses, etc.). Loops are analyzed by computing widening/narrowing fixpoints,
function calls are unrolled dynamically, and recursive functions are outside
scope. Errors in analysis are logged and analysis runs to completion. Programs
that pass analysis without error can be compiled with CompCert, to produce
runtime error-free assembly code.

The implementation was tested on small a number of benchmarks, and while
absence of runtime errors was established correctly, high analysis times were
obtained in some cases. It was also established that use of rich C language did
not present an issue for implementing Coq proof, and based on similar works,
aposteriori validation could help reduce runtime latency.

4.3 Formal Verification of an SSA-based Middle-end for
CompCert

(Barthe, Demange, and Pichardie 2014)

In compilation, static single assignment (SSA) form is a property of intermedi-
ate representation (IR), where variables are assigned exactly once. SSA form
enables writing simpler, faster and higher quality optimizations. While SSA
form offers such benefits and is widely used in standard industry compilers
(e.g. GCC and LLVM), formally verifying a SSA-based compiler is challenging
and has remained an open problem.

The formally verified C compiler, CompCert, does not use the SSA form. There
are two reasons for this: formalizing the semantics of SSA has historically been
difficult, and it creates challenges with applying local optimizations since the
SSA property is inherently global. This paper addresses both outstanding issues
by presenting the first verified SSA-based middle-end, the first formal proof of an
SSA-based optimization, and provides intuitive semantics for SSA. This shows
that a compiler can simultaneously be realistic, verified and rely on SSA form.

The technical contribution is the middle-end implementation, which “pluggs in”
at the level of RTL pass, where most CompCert optimizations take place. The
implementation reuses the CompCert front-end and back-end, first to translate
program from C source code to RTL; then to translate again from RTL to
assembly. The middle-end operates in 4 phases: first it normalizes the RTL IR,
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then translates from RTL to SSA, then applies SSA-based optimizations, and
finally performs de-SSA translation back to RTL form.

The paper gives experimental evaluation of the efficiency of the SSA validation,
execution of time of the generated code, and evaluates the effectiveness of the
performed optimization. On the benchmarked examples, the results do not
deviate significantly from those recorded with standard CompCert or the GCC
compiler.

4.4 Implicit Complexity in Theory and Practice
(Moyen 2017)

The habilitation thesis of Jean-Yves Moyen, summarizes the foundations, ad-
vancements and future directions in Implicit Computational Complexity (ICC),
over the years 2003-2016. It contains various related papers, grouped into 3
sections that coincide conceptually and temporally.

The first section describes advances in ICC. It introduces foundational theoret-
ical concepts and early attempts to unify the various ICC systems

The second part focuses on the authors current works, centering around equiva-
lences between programs. Influenced by Rice’s theorem and dichotomy between
programs and functions, this section represents the more recent advances in ICC
theory.

The last section is dedicated to the future directions and named experiments in
ICC. The theme of this section is concerned with taking these theoretical ICC
analysis techniques and applying them in real-world settings e.g., in compilers.

Collectively this work elaborates on the developments and advances in ICC,
putting the ideas in chronological order, and delivers structural understanding
that is missing from isolated works in the same domain.

4.5 Loop Quasi-Invariant Chunk Detection
(Moyen, Rubiano, and Seiller 2017)

In modern compilers, loop optimization is a standard task and typically focuses
on detection of loop invariant code: statements that do not change over the
iterations of the loop. Following detection of such statements, the invariants
can be hoisted from the loop to improve performance.

A related concept is quasi-invariance, where the behavior of a statement be-
comes fixed after a certain finite number of iterations. The number of iterations
to reach a fixed state is called the invariance degree. While quasi-invariants
are a known concept in compiler community, analysis techniques to purposely
discover and optimize quasi-invariants do not exist, although it may occur as a
byproduct of other transformations.
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The paper presents a novel, ICC-inspired optimization technique for quasi-
invariant detection. By analyzing loops in an imperative programming lan-
guage through data flow graphs, the algorithm detects independence between
statements or sequences of statements called “chunks,” and hoists the invariant
code out of loops. If the hoisted block is a nested loop, then the computational
complexity of the program decreases. This technique has additional advantages:
it can detect arbitrary degree of invariance and can optimize chucks of code,
when most optimizations focus on statements individually.

The authors describe two implementations of this technique, one of which is
implemented on a simplified toy language and another as a pass in the LLVM
compiler. Collectively the paper presents both advancements to ICC theory and
the first gallant attempts to move those theories into the real world.

4.6 Tight Polynomial Worst-Case Bounds for Loop
Programs

(Ben-Amram and Hamilton 2020)

For a class of programs defined in a non-deterministic imperative language,
with bounded loops and restricted arithmetic expressions, it was previously
shown that it is decidable whether computed result is polynomially bounded.
This paper extends the earlier work by introducing a computational method for
obtaining a tight Θ-bound. The bound is multivariate and expressed as values
of variables at the conclusion of program, in terms of initial values. The bound
is tight up to a multiplicative constant factor, and the computational method
is complete: if a bound exists, it will be found.

The problem of analyzing a core language program reduces to analyzing a single
simple disjunctive loop. Loop body may contain exponential growth: since poly-
nomially bounded variables can be identified, the rest are substituted with ded-
icated unmodified variables, which yields a polynomially bounded loop. Then,
analyzing the loop is intuitively a question of simulating any finite number of
iterations over that loop and whether the computation reaches a fixpoint. Us-
ing a generalization operation, it is possible to detect when iteration does not
generate anything new and analysis can stop, yielding a tight bound.

Paper includes a detailed correctness proof, which shows that analysis covers all
loop behaviors, for lower and upper bound, thus tightness follows. Method can
be applied compositionally to nested loops. Time complexity of the algorithm
is |𝑃 | ⋅ 2𝑛𝑑+1 , where |𝑃 | is the size of program, 𝑛 is number of variables, and
𝑑 is the highest degree reached. The method is susceptible to combinatorial
explosion related to representation of its result.

Improving this method is an open problem. Handling of variable resets, explicit
constants, increments and decrements, and deterministic loops are out of scope.
Some of these enhancements would make the polynomial boundedness problem
undecidable.
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