
On Implicit Computational Complexity with
Applications to Real-World Programs

Neea Rusch
Augusta University

17 May 2022

Topics: static analysis +

Formal Verification

of an SSA-Based
Middle-End for
CompCert

A Formally-Verified
C Static Analyzer

Tight Polynomial
Worst-Case Bounds

for Loop Programs

Loop Quasi-Invariant
Chunk Detection

A Flow Calculus of
mwp-Bounds for
Complexity Analysis

Implicit Complexity in
Theory and Practice

compilers

 verification

complexity

1 / 36

> is my program

behavior correct?

git commit -m

"Works on my machine"

> run tests

Name Stmts Miss Cover

matrix.py 155 0 91 %
analysis.py 222 12 86 %

coveragecoverage 89%89%

static analysis

Static analysis offers much stronger guarantees

▶ Evaluates program behavior for all inputs

▶ Analyzes programs statically, without execution

▶ Typically performed using an automated tool

▶ Study various properties: data flow, errors, resources, . . .

▶ More use cases: optimize programs, improve compilers

6 / 36

. . . but static analysis is difficult

▶ Limited information: only what is known statically or at
compile time

▶ Analyser itself is software — can we trust its result?

▶ Rice’s theorem: all non-trivial semantic properties are
undecidable

7 / 36

Why complexity analysis?

According to Jean-Yves Moyen1, there are many good reasons.

Different programs can compute the same function, and knowing
their resource usage is useful:

▶ Predict the amount of resources needed to ensure it can run
on a given computer

▶ Determine which parts of the program are (or are not) efficient

1Moyen, Jean-Yves. 2017. “Implicit Complexity in Theory and Practice.”
Habilitation à Diriger des Recherches (HDR). University of Copenhagen.

8 / 36

Why complexity analysis?

“Certifying program resource usages is possibly as crucial as

the specification of program correctness, since a guaranteed

correct program whose memory usage exceeds available

resources is, in fact, unreliable.”2

2Aubert, Clément, et al. 2022. “mwp-Analysis Improvement and
Implementation: Realizing Implicit Computational Complexity.”

9 / 36

Traditional Computational Complexity theory

Traditional approach uses computational models.

▶ Models lack expressivity – not used to program anything

▶ Real programs are not suitable for analysis on these models

10 / 36

Implicit Computational Complexity (ICC) theory

Definition by Romain Péchoux:3

Let L be a programming language, C a complexity class, and [[p]]
the function computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] | p ∈ R} = C

The variables L, C and R are the parameters that vary greatly
between different ICC systems.

3Péchoux, Romain. 2020. “Complexité implicite: bilan et perspectives.”
Habilitation à Diriger des Recherches (HDR). Université de Lorraine.

11 / 36

“A Flow Calculus of
mwp-Bounds for Complexity

Analysis”

Neil D. Jones and Lars Kristiansen (2009)

mwp-Analysis: Introduction

Is growth of variable values polynomially bounded?

▶ Will use the mwp-Calculus to determine this

▶ Program variables are collected in a matrix

▶ Flows in matrix characterize variable dependencies:

0 - no dependency
m - maximal weaker

w - weak polynomial
p - polynomial stronger

▶ If derivation exists, then polynomially bounded

13 / 36

mwp-Analysis: Program Syntax

Variable X1 | X2 | X3 | . . .

Expression X | e + e | e * e

Boolean Exp. e = e, e < e, etc.

Commands skip | X := e | C;C | loop X {C} |
if b then C else C | while b do {C}

14 / 36

mwp-Analysis: Derivation Example

Let’s analyze this program: loop X3 {X2 = X1 + X2}

15 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 :

m0
0

 X2 :

 0
m
0

 E1
⊢ Xi : {mi }

16 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 :

m0
0

 X2 :

 0
m
0

 E1
⊢ Xi : {mi }

16 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 :

m0
0

 X2 :

 0
m
0



X1 + X2 :

 p
m
0



E2
⊢ e : {wi | i ∈ var(e)}

⊢ e1 : V1 ⊢ e2 : V2 E3
⊢ e1 + e2 : pV1 ⊕ V2

⊢ e1 : V1 ⊢ e2 : V2 E4
⊢ e1 + e2 : V1 ⊕ pV2

17 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 :

m0
0

 X2 :

 0
m
0



X1 + X2 :

 p
m
0



E2
⊢ e : {wi | i ∈ var(e)}

⊢ e1 : V1 ⊢ e2 : V2 E3
⊢ e1 + e2 : pV1 ⊕ V2

⊢ e1 : V1 ⊢ e2 : V2 E4
⊢ e1 + e2 : V1 ⊕ pV2

17 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 + X2 :

 p
m
0



X2 = X1 + X2 :

m p 0
0 m 0
0 0 m


⊢ e : V A

⊢ Xj = e : 1
j←− V

18 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X1 + X2 :

 p
m
0



X2 = X1 + X2 :

m p 0
0 m 0
0 0 m


⊢ e : V A

⊢ Xj = e : 1
j←− V

18 / 36

mwp-Analysis: Derivation Example

loop X3 { X2 = X1 + X2 }

X2 = X1 + X2 :

m p 0
0 m 0
0 0 m



⊢ C : M∀i, [M∗
ii = m] L

⊢ loop Xl{C} : M∗ ⊕ {pl→ j | ∃i[M∗
ij = p]}

19 / 36

mwp-Analysis: Derivation Example

loop X3 {X2 = X1 + X2} :

m p 0
0 m 0
0 p m



20 / 36

mwp-Analysis: Debrief

▶ . . . it works!

▶ When |= C : M holds, the bound property is guaranteed:
invalid programs are not accepted.

▶ It is a theoretical approach: does it work on real programs?

▶ How big is the class of programs that can be analyzed?

▶ The bound is coarse

▶ The syntax is restrictive

21 / 36

About tight bounds

In “Tight Polynomial Worst-Case Bounds for Loop Programs”,
Amir Ben-Amram and Geoff Hamilton (2020) show that for a
simple imperative core language

▶ It is possible to obtain asymptotically-tight Θ-bound, up to
multiplicative constant factor

▶ The bound is multivariate and disjunctive
e.g., ⟨x21,x2,x2 + x3⟩ is tight bound of x1,x2 and x3

▶ Complete solution: if polynomial bound exists it will be found

. . . but what to do about restrictive syntax?

22 / 36

Compilers

Classic architecture has 3 parts

Language 1

source code

Front-end for

Language 1

Intermediate

code optimizer

Target 1 code
generator

Target n code
generator

⋮

Language n

source code

Front-end for

Language n

⋮⋮

front-end middle-end back-end

23 / 36

Compilers

Compilers are the natural place to introduce ICC systems4.

▶ Most work is done in Intermediate Representation (IR)

▶ IR is generic, typed, assembly-like

▶ Analyses and optimizations already occur in these
intermediate passes

▶ Any language supported by front-end can be analyzed

Maybe this will work for ICC analysis on real programs?

4Moyen, Jean-Yves. 2017. “Implicit Complexity in Theory and Practice.”
Habilitation à Diriger des Recherches (HDR). University of Copenhagen.

24 / 36

ICC meets compilers

In “Loop Quasi-Invariant Chunk Detection” by Jean-Yves Moyen,
Thomas Rubiano, and Thomas Seiller (2017):

▶ Introduce an automatable loop optimization technique

▶ Analyzes loop quasi-invariants, that become fixed after finite
iterations; the number of iterations is invariance degree

▶ Method can handle blocks of statements and arbitrary depth
of invariance degree

▶ If a chunk is an inner loop, hoisting it reduces complexity

25 / 36

ICC meets compilers

In “Loop Quasi-Invariant Chunk Detection” by Jean-Yves Moyen,
Thomas Rubiano, and Thomas Seiller (2017):

▶ Paper comes with two artifacts: standalone tool and LLVM
compiler prototype pass

▶ Implementation assumes programs in static single assignment
(SSA) form

▶ SSA-form is property of some IRs where variables are assigned
once

This is the first known application of ICC techniques in a
mainstream compiler.

26 / 36

. . . but recall this initial challenge

Analyser itself is software

can we trust its result?

27 / 36

Formally verified software

▶ Correctly implemented program may not behave correctly as
an executable

▶ Result of static analysis may not hold in the executable
program

▶ . . . unless compiler guarantees preservation of semantics

▶ We can use mechanical proofs to establish rigorous guarantees
of correctness using proof assistants

How realistic is this approach?

28 / 36

We already have the CompCert compiler

The CompCert C verified compiler5

▶ A realistic, high-assurance compiler for almost all of C

▶ Comes with a mathematical, machine-checked proofs

▶ Generated executable code behaves exactly as prescribed by
the semantics of the source program

5https://compcert.org
29 / 36

Formally verified static analysis is doable

In “A Formally-Verified C Static Analyzer” by Jacques-Henri
Jourdan et al. (2015):

▶ Verasco – the first formally verified static analyzer

▶ Based on abstract interpretation and detects runtime errors

▶ Integrates with CompCert such that guarantees established by
Verasco carry over to the compiled code

But what about SSA-form?

30 / 36

Formally verified SSA-form middle-end also exists

In “Formal Verification of an SSA-based Middle-end for CompCert”
by Gilles Barthe, Delphine Demange, and David Pichardie (2014):

▶ SSA form is useful for many optimizations, but not used in
CompCert

▶ The result is a formally verified middle-end implementation

▶ Middle-end translates in and out of SSA form and performs
sample optimization

31 / 36

All the necessary pieces are now in place

Formal Verification

of an SSA-Based
Middle-End for
CompCert

A Formally-Verified
C Static Analyzer

Tight Polynomial
Worst-Case Bounds

for Loop Programs

Loop Quasi-Invariant
Chunk Detection

A Flow Calculus of
mwp-Bounds for
Complexity Analysis

Implicit Complexity in
Theory and Practice

compilers

 verification

complexity

32 / 36

Future directions

Extensions of Implicit Computational Complexity

▶ So far these techniques exist almost only on paper

▶ Powerfulness — what can be said about the classes of
programs they can analyse?

▶ Applied applications and study of extended properties
▶ power usage, error growth, etc.
▶ optimizations based on these analyses

33 / 36

Future directions

Integrating ICC-based analyses in compilers

▶ Do these systems work on real languages, with memory
accesses, classes, recursion, etc.?

▶ This is a realistic target for applying these methods

34 / 36

Future directions

Verified complexity analysis

▶ Gives strongest possible assurance of result correctness

▶ Implementations using other techniques and for other
properties exist — but not verified complexity analysis

▶ The mwp-analysis is a potentially good candidate

35 / 36

compilers

 verification

complexity

