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Abstract

Complexity analysis offers developers better understanding of program’s runtime behav-
ior, but mechanical approaches to evaluate complexity properties are scarce and limited.
This research proposal addresses this gap between computational complexity theory and
its practical application. The main hypothesis is that techniques from Implicit Compu-
tational Complexity (ICC) provide new approaches to automatic program analysis and
resolve certain limitations of the state-of-the-art complexity analysis techniques. This
is unapparent because ICC systems have primarily been used for theoretical purposes
and their practical applications are rare. The intent of this work is to evaluate the
hypothesis along three directions. First to show that obtaining automatic program
analysis with ICC is in fact achievable. Then, to demonstrate that ICC systems are
viable candidates for achieving formally verified complexity analysis. Lastly, to confirm
that ICC-based techniques find extended applications, e.g., in optimizing complexity
properties during compilation. The formal verification aspect is particularly interesting
because certifying the correctness of a complexity analysis technique has not been done
before. Collectively these directions suggest that ICC is not just a treasure of the
theorists but can move practical analyses a few steps closer to becoming a standard in
modern development workflows.
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1 Hypothesis and Specific Aims

In software verification, compile-time static analyses are used to assist developers in deriving
quantitative information about program’s runtime behavior. Many program properties
can be analyzed, but obtaining information specifically about resource consumption is
necessary when those properties form an integral part of program’s correctness. For example,
verifying cryptographic protocols and constant-time implementations require establishing
their complexity bounds, and safety-critical systems must guarantee bounded memory
consumption to avoid potential failure.

Despite this clear motivation to analyze complexity properties, solutions to perform such
analysis automatically remain absent in modern software development workflows. Obtaining
resource bounds for an arbitrary program is undecidable [1, p. 219]|; however, by identifying
techniques that cover sufficiently large classes of programs, automatic analysis becomes
achievable. Prior attempts have been successful at e.g., analyzing various programming
languages and obtaining tight bounds [2, 3, 4]. But the state-of-the-art techniques also have
limitations, including general lack of compositionality, constrained user interaction, and high
probability of implementation errors [5, 6]. The last is particularly troubling, because the
correctness of the analyzer is a necessary precondition to trusting the result it computes.

The hypothesis of this project is that techniques from implicit computational complexity
theory could resolve some outstanding issues in automated complexity analysis. Implicit
Computational Complexity (ICC) [7] is a subfield of complexity theory, which aims at finding
syntactic criteria to guarantee program’s runtime behavior. By embedding in programs a
guarantee of resource usage, it captures implicit characterizations of complexity classes in
machine-independent ways. The systems are often compositional and do not require e.g.,
termination or exact iteration bounds, therefore avoiding challenges that other analysis
techniques must handle. Further, their mathematical foundation makes them potentially
suitable for certification. However, since ICC systems are primarily used for theoretical
purposes, and their practical applications are rare [8, 9, 10, 11, 12, 13], it remains unclear
whether this assumption holds.

Specific aims. This project aims to reduce the gap between complexity theory and its
practical application, by leveraging techniques from ICC, to evaluate their suitability and
powerfulness in automatic program analysis. This includes the plan to certify the correctness
of a computational complexity technique, which has not been done before (cf. subsection 2.4).
More precisely, the project has the following goals:

e Realizing ICC — demonstrate suitability of ICC in automatic program analysis. This
is done by adjusting and extending a theoretical system—the muwp-flow analysis (cf.
subsection 2.2)—to make it suitable for concrete implementation.

e Certifying complexity — obtain formally verified complexity analysis by mechanically
formalizing the mwp-flow analysis computational technique, using an interactive



theorem prover, i.e., the Coq proof assistant.

e Extended applications — assert that ICC can extend to other use cases beyond read-
only analysis, and is particularly suited for compiler integration with intermediate
representation. This is done by introducing applications e.g., in program optimization.

The details of each goal are discussed in section 3. The collective unifying implication of
these goals is that they evaluate the robustness of ICC for practical applications, and address
open challenges in the area of automatic complexity analysis. Note that the intent of this
work is not to produce the most elaborate static analyzers; rather the main idea is to evaluate
suitability and advantages of ICC to address outstanding challenges in program analysis.
Positive results serve to advance future versions of concrete tools, but such enhancements
are outside the scope of this work.

2 Background and Significance

This section gives an overview and sufficient background of the relevant topics impacting
the proposed research. It introduces Implicit Computational Complexity and mwp-flow
analysis; discusses the results in automatic complexity analysis and certifying complexity,
and comments on the significance of this proposal. If the general notions of these topics are
familiar, a deep reading of this section is not required to follow the remaining sections.

2.1 Implicit Computational Complexity

Implicit Computational Complexity [7] is a subfield in computational complexity theory.
Unlike the traditional approach, is not concerned with a specific computational model; rather
it considers implicit characterizations of complexity classes by placing various syntactic
criteria on a program, which in turn guarantees some semantic properties about it, usually
resource usage bounds. Numerous distinct program analysis systems exist, mainly revolving
around type checking, data flow, or performing checks on computed values [14]. An interesting
general description of ICC has been given [15] as follows: let L be a programming language,
C' a complexity class, and [p] the function computed by program p. Then the task is to
find a restriction R C L, such that the following equality holds: {[p] | p € R} = C. The
variables L, C, and R are the parameters that vary greatly between different ICC systems.

The ICC flavor of program analysis offers several benefits. It drives better understanding
of complexity classes, introduces new and often orthogonal analysis techniques, and provides
a prospective avenue for realizing complexity analyses. By embedding a restriction in a
program, by which a complexity bound will be guaranteed, the effort of satisfying that
restriction is raised upstream to the programmer. If the restriction is maintained, then the
bound will be maintained. This implicit character leads to a natural approach to complexity
analysis: developers can focus on writing programs and concurrently obtain guarantees



of their behavior. This works assuming that the restriction is not excessively limiting in
expressing algorithms in practice [14].

2.2 Overview of mwp-Flow Analysis

The mwp-flow analysis [16] is one example of an ICC-based system. It is a sound compu-
tational method that certifies polynomial bounds on the size of the values manipulated
by an imperative program. It provides a certificate guaranteeing that the program uses
throughout its execution at most a polynomial amount of space and, if a program terminates,
it will do so in polynomial time in the size of its inputs. The analysis computes, for each
program variable, a vector tracking how it depends on other variables. The vector values are
determined by applying the nondeterministic rules of the mwp-calculus to the commands
of the program. Those vectors are collected in a matrix. A program is assigned a matrix
only if all the values in it are bounded by a polynomial in the input sizes. This technique is
compositional and operates on a simple, imperative language.

2.3 Automatic Complexity Analysis

The most advanced automatic complexity analyzers are represented by tools such as
AProVE [2], ComplexityParser [3|, and RaML [4]. They perform complexity analysis
based on different approaches: integer term rewrite systems, tier-based typing, and cost
amortization, respectively. They offer varying levels of maturity and feature support and
target different programming languages and paradigms. The annual Termination and Com-
plexity Competition (TermCOMP), that focuses on automated termination and complexity
analysis for various kinds of programming paradigms [17], offers interesting insight of the
performance of the various tools that choose to participate!. Although current solutions
are rich in functionality, challenges remain relating to their choices in methodologies (lack
scalability, absence of compositionality [5]); user interaction (level of user control, inter-
pretability of results [4, 5]); and absence of formal verification to ensure correctness of their
implementations |5]. These impact the analyzer applicability and performance and reduce
their usability.

Practical applications that derive from ICC-based approaches appear primarily in two
categories: standalone static analyzers and compiler pass implementations. The earliest
known implementation appeared in 2008 by Avanzini et al. [§8] in ICCT: a command-line
tool for automatic analysis of polynomial time computable functions through term rewriting.
In later works, Avanzini and Dal Lago [9] introduced a complexity analysis methodology
for higher-order functional programs, and demonstrated this method in a tool called HoSa.
Avanzini et al. [10] then worked on analyzing complexity of probabilistic programs, resulting
in tool called ecoimp. A separate series of works by Moyen et al., push in the direction
of implementing ICC techniques as compiler passes, integrating with the LLVM compiler

'Results of 2021 competition: https://termcomp.github.io/Y2021/
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intermediate representation. First work introduced an implementation of Non-Size Increasing
(NSI) program analysis, which helps detect memory leaks by tracking memory allocation
and deallocations [12]. A second result applied ICC-inspired dependency graph analysis to
detect loop quasi-invariants to optimize the complexity of generated code [13].

2.4 Formally Verified Complexity

A few prior results exist that combine formalization of complexity with the Coq proof
assistant. They range from practical analyses to proofs in computational complexity theory.
For practical application, Coq has been used to verify stack bounds for assembly code 18] and
to obtain WCET loop-bound estimation [19]. Carbonneaux et al. [6] presented an automatic
static analyzer for imperative programs, and although the analyzer itself is not verified,
it generates bounds with machine-checkable certificates, to guarantee that the computed
bound holds. For functional paradigm, McCarthy et al. [20] developed a Coq library, with a
monad that counts abstract steps, which enabled running time analysis of programs written
using the monad. An ICC-based characterization was introduced by Férée et al. [21], in
the form of a Coq library, that allows for readily proving that a function is computable in
polynomial time. For results in computational complexity theory, Ciaffaglione [22] proved
the undecidability of the halting problem. Guéneau et al. [23]| formalized the O notation.
Forster et al. [24] implemented a multi-tape to single-tape compiler and introduced the first
formalized universal Turing Machine verified w.r.t. time and space complexity for any model
of computation, in any proof assistant. More recently, Gdher and Kunze formalized the
Cook-Levin theorem in Coq [25]|. Despite these advances, formalization of complexity is in
early stages and basic complexity-theoretic results e.g., time and space hierarchy theorems
remain unavailable.

2.5 Significance

This research proposal intersects computer science theory and application, with the intent
of using those theoretical approaches to solve existing challenges in automatic program
analysis. In 2017, Jean-Yves Moyen—a notable researcher in the ICC community, whose
career spans 3 decades of advancements—remarked enthusiastically, that after twenty years
and many results, ICC was ready to move into real-world and to concrete applications [14,
p. 7]. And although a few early results exist, as noted earlier in this section, progress in
this direction is still at early stages. With similar aspirations, this proposal hopes to move
further in that direction. It is conceivable that certified complexity would be of significant
interest to multiple research communities. The next section will detail the specifics of the
methodology, that consists of multiple projects. Assuming the successful completion of each
project, they would show that certifiably correct complexity analysis is achievable, and that
ICC techniques can be used to obtain efficient and practical complexity analysis. These
results would extend current capabilities in automatic complexity analysis, and move those



techniques closer to becoming a standard in real-world software verification.

3 Research Design and Methods

The proposed research naturally divides into three directions along its specified aims. Each
has separate goals, timeline, and expected results. This section discusses the details of those
research directions, provides motivations for their choice approaches, and specifies their
obtained or expected results. Portions of this research have already been completed, and
others are currently under investigation by the author. The presentation in this section is
organized thematically. Also note that these research directions are mutually exclusive: they
can be completed in parallel, and success (or failure) in one branch does not impact the
rest; but when considered collectively, they support the main hypothesis of this proposal.

3.1 Realizing ICC: Obtaining Automatic Analysis

The foundation of this work is the theoretical technique of mwp-flow analysis [16], also
introduced in subsection 2.2. While it offers an elegant theoretical computational method
for resource bounds analysis of simple imperative programs, its use for practical purposes is
not straightforward. Due to its nondeterminism, it is generally not feasible to determine if a
matrix corresponding to an input program exists. The pen-and-paper strategy also does
not consider the difficulty in handling failure that is a critical consideration for concrete
applications. Furthermore, the original authors are unsure of the richness and expressiveness
of the method; i.e., whether its syntax can be extended to richer syntax, and how useful
this method is in analyzing larger classes of programs, beyond the toy examples presented
in the paper. As presented, this analysis offers a suitable investigation target, to measure if
this ICC-inspired technique can be applied to obtain automatic analysis.

Methodology. The intent of this direction of work is to answer the questions left open by
the original authors, and to resolve the outstanding challenges that make this technique
difficult to implement. This is done by modifying the underlying mathematical framework, to
make the system deterministic and capable of handling failure. This is achieved by extending
the original technique and its supported syntax; redefining its inference rules, handling
failures internally through a choice semi-ring, and generating efficient data representations
and algorithms to process the input program and to compute the result. The system is
extended with support for function calls including recursion, which are important elements
to achieve compositional analysis. The enhanced system is fully automatic since an input
program need not be annotated to perform the analysis. A standalone static analyzer,
pymwp [26], is implemented to demonstrate the enhanced and extended technique.
Results. This work has effectively been completed. The results demonstrate that the goals
of this work are achievable, and signal positive feedback to strengthen the hypothesis of this
research proposal. The extended theoretical method, describing appropriate system adjust-
ments to obtain practical analysis, was published as a research paper at 7th International



Conference on Formal Structures for Computation and Deduction (FSCD’22) [11]. A second
publication, which demonstrates the static analyzer tool, has been submitted to the 29th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’23), as a tool demonstration paper, for possible publication in 2023 [27].

3.2 Certifying Complexity: Provably Correct Resource Bounds

Formally verified development toolchains, with machine-assisted mathematical proofs, pro-
vide the highest assurance of the correctness of the underlying system. They are especially
important in production of critical software systems to assure correctness in, e.g., transporta-
tion, energy and telecommunications. In such domains, the need to rigorously confirm that
a program meets their specification justifies the high effort required by formal verification.
Although results are scarce in complexity analysis (cf. subsection 2.4), encouraging results
exist in related areas. The CompCert verified C compiler [28] established the foundation for
provably correct realistic compilation, as the compiler guarantees preservation of program
semantics. Subsequent work by Jourdan et al. [29], using abstract interpretation to analyze
runtime errors, proved that formally verified static analysis is achievable. The motivation
for this work is similar: by leveraging ICC, the goal is to obtain formally verified complexity
analysis that guarantees the correctness of the obtained analysis result.

Methodology. This work reuses the mwp-flow analysis as a target for mechanical for-
malization using the Coq proof assistant. More specifically, the goal is to formalize the
computational method itself, as presented in the original paper [16]. The main result of
the paper is the soundness theorem, that states for a program (command) C and matrix M,
F C: M implies F C: M, which means the calculus assigns the matrix M to the program
C, and further, a command is derivable if the calculus assigns at least one matrix to the
command. This relation holds iff every value computed by C is bounded by a polynomial in
the inputs. The goal of this work is to prove this soundness theorem, and its other related
theorems, as presented in the original paper. Based on review of related works in this
area (cf. subsection 2.4), this is the first known attempt to formalize a complexity analysis
technique in Coq.

The motivation for choosing the mwp-flow analysis as the target of formalization is
based on multiple factors. To start, its underlying mathematical structure relies on inference
rules and linear algebra, which seem highly suitable for formalization. The mathematical
components [30] Coq library comes with built-in tactics to prove operations on matrices.
The imperative programming language under analysis also seems suitable, because it is
similar to the language used in Coq literature to prove properties of programs [31, Imp]|.
Since the analysis technique was used in the earlier work, it is already deeply understood
and familiar to the author. Lastly, assuming the formalization succeeds, it then lends itself
to further formal development, such as a formally verified complexity analyzer. The choice
of using Coq proof assistant is motivated by its use in the earlier related formalizations,
its industry-grade development stage, and readily available literature and support. The
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challenge of using Coq includes determining the appropriate tools to apply and working
around the foundational assumptions of Coq, if those assumptions conflict with the original
paper proofs or the analysis technique. However, it is difficult to identify potential challenges
in advance.

Expected results. The success of this work greatly depends on the ability to complete
the Coq formalization. Subsequent directions can then be explored in formalizing a static
analyzer based on this technique. The result of the formalization itself is likely sufficiently
interesting for conference publication at venues that have accepted similar results in the
past (cf. subsection 2.4). A preliminary presentation of this work has been accepted and
will occur in January 2023 at the CoqPL workshop [32].

3.3 Extended Applications: Transforming and Optimizing Programs

Correctly analyzing a “real world” programming language is a difficult task because of
the large number of allowed constructions [14, p. 15]. Compilers represent a natural
target for introducing practical and automatic analyses, because they already perform the
task of mapping rich languages to more simplified intermediate representations, while still
maintaining sufficient information about program structure. Compilers already include
optimization techniques, that can either benefit from, or be reused by, choice program
analysis techniques. Further, compilers make integrated analyses applicable for large classes
of programs, since any language accepted by the compiler front-end can potentially be
analyzed. These motivations provided the underlying drive for earlier work by Moyen et
al. [13], showing that performing ICC-based analysis in compilers is not only achievable, but
can also offer new techniques for optimizing program’s resource usage during compilation.
This seminal paper was the first known application of ICC in a mainstream compiler (LLVM)
and serves as inspiration for the direction of work presented next. Although the early result
was encouraging, subsequent pushes in this direction have not occurred. The goal of this
work is to explore the extended applications of ICC, and to establish its other practical uses,
particularly in connection with compilation.

Methodology. Using an ICC-inspired dependency analysis technique, a program trans-
formation technique is developed to detect independence between loop body statements,
and to split those statements into separate loops. This transformation is generally known
as “loop fission”, and a fissioned program can then be parallelized, to obtain performance
gain on multicore architectures. Although similar program transformations are generally
achievable by other methods, the technique developed here is distinct in its ability to analyze
and optimize loops with unknown iteration spaces. This work outlines the details of this
transformation technique and includes the development of a set of benchmarks to evaluate
its anticipated gain in terms of runtime performance. Further work in this direction is open
to exploration, where other related applications, or extensions of this technique, can be
investigated, possibly by developing compiler passes.

Results. This direction of work, i.e., the approach related to loop optimization, has resulted



in one accepted conference publication and will appear at the 24th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI'23) [33].

3.4 Tentative Timeline

3.4.1 Preliminary and Investigative Work

Start End Description

2021 Jan | 2022 Apr | Investigative work on implementing mwp-flow analysis

2021 Oct | 2022 May | Investigative work on parallelizing loops

2022 Jul | 2022 Dec | Study logical foundations in Coq

2022 Aug | 2022 Sep | Benchmark and artifact for parallelization of loops

2022 Sep | 2022 Oct | Prepare pymwp artifact and paper submission

2022 Sep | -7 Formalization of mwp-flow analysis, including: specifying ana-
lyzed language, mathematical structures and type system; prov-
ing all lemmas and theorems.

3.4.2 Schedule of Presentations

Date Title (At)

2022 Apr 1 Semantic-preserving optimization algorithm for automatic program par-
allelization (AU Graduate Research Day)

2022 Jun 20 Realizing Implicit Computational Complexity (TYPES22)

2022 Aug 4 mwp-Analysis Improvement and Implementation: Realizing Implicit
Computational Complexity (FSCD’22)

2022 Dec 6 Formally Verified Resource Bounds Through Implicit Computational
Complexity (SPLASH’22 Doctoral Symposium)

2023 Jan 16/7 | Distributing and Parallelizing Non-canonical Loops (VMCAI'23)

2023 Jan 21 Certifying Complexity Analysis (CoqPL’23)

4 Previous Work Done in this or Related Fields
This section lists aspects demonstrating author’s preparedness for completing this proposal.

e Research experience — author has worked with a research team on ICC-inspired topics
for past 2 years, which has resulted in the publications listed in section 5.

e Computer science foundations — author has completed undergraduate and master’s
degrees in computer science. These have included wide-range exposure to different CS
topics and provides ability to leverage those concepts in completion of this project.

e Mathematical foundations — author has more limited exposure in these areas but is
confident all gaps can be resolved dynamically.



e Programming experience — author is highly technically proficient, with e.g., several

years of industry experience and contributions to open source community. These skills
will facilitate timely completion of all programming aspects of the project.

e Proof assistants — author has independently completed, or is completing, training

in use of Coq proof assistant. This is done by studying the Software Foundations-
series of books, volumes “Logical Foundations” [31] and “Programming Language
Foundations” [34]. These provide the necessary skills for proving properties of programs.

5 Personal Publications

As commonly done in theoretical computer science, authors are listed in alphabetical order.

Published and Submitted Papers

1.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “mwp-Analysis Improve-
ment and Implementation: Realizing Implicit Computational Complexity”. In: F'SCD 2022.
Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022, 26:1-26:23. DOI:
10.4230/LIPIcs.FSCD.2022.26.

Neea Rusch. “Formally Verified Resource Bounds Through Implicit Computational Com-
plexity”. In: Companion Proceedings of the 2022 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity. SPLASH
Companion 2022. Association for Computing Machinery, 2022. DOI: 10.1145/3563768.3565545.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Distributing and
Parallelizing Non-canonical Loops”. To appear in Verification, Model Checking, and Abstract
Interpretation (VMCAI). 2023.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “pymwp: A Tool
for Guaranteeing Complexity Bounds for C Programs”. Submitted to 29th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
2023.

Peer-Reviewed Papers Without Published Proceedings

5.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Realizing Implicit
Computational Complexity”. At the 28th International Conference on Types for Proofs and
Programs (TYPES). 2022. URL: https://types22.inria.fr/files/2022/06/TYPES_2022_paper_
14.pdf.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Certifying Complexity
Analysis”. At the Ninth International Workshop on Coq for Programming Languages (CoqPL).
2023.
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Artifacts
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Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. Distributing and Paral-
lelizing Non-canonical Loops — Artifact. Version 1.0. Sept. 2022. DOI: 10.5281/zenodo.7080145.
URL: https://github.com/statycc/loop-fission.

Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller. pymwp: A Tool for
Guaranteeing Complezity Bounds for C' Programs. Version 1.0. Oct. 2022. DOI: 10.5281/zenodo.
7159134. URL: https://github.com/statycc/pymwp.
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