
Formally Verified Resource Bounds
through Implicit Computational Complexity

Neea Rusch
Augusta University, United States

SPLASH 2022 Doctoral Symposium
6 December 2022



Significance of Resource Bounds

• Constant-time programs

• Excessive time/space usage makes programs fail

1 / 17



Hypothesis

From Implicit Computational Complexity (ICC) we get new approaches to
automatic program analysis and can resolve certain limitations.

2 / 17



Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the function
computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] | p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between different
ICC systems1.

1Romain Péchoux. Complexité implicite : bilan et perspectives. Habilitation à Diriger des Recherches
(HDR). 2020. url: https://hal.univ-lorraine.fr/tel-02978986.

3 / 17

https://hal.univ-lorraine.fr/tel-02978986


mwp-Flow Analysis2

For an imperative program:
is the growth of input variable values polynomially bounded?

Will use the mwp-flow analysis to determine this.

2Neil D. Jones and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In: ACM
Trans. Comput. Log. 10.4 (Aug. 2009), 28:1–28:41. doi: 10.1145/1555746.1555752.

4 / 17

https://doi.org/10.1145/1555746.1555752


The mwp-Calculus

• Track how variable depends on other variables.

• Flows characterize dependencies:
0 - no dependency
m - maximal weaker

w - weak polynomial
p - polynomial stronger

• Apply inference rules to program statements.

• Analysis result is collected in a matrix.

5 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 0 m 0
X3 0 0 m

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 p
X2 0 m 0
X3 0 0 m

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 0 m p
X3 0 0 m

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 p
X2 0 m p
X3 0 0 m

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 w m 0
X3 w 0 m

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 w m 0
X3 w 0 m

= M∗

6 / 17



mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 p 0 p
X2 p m p
X3 w 0 m

= C;C

6 / 17



mwp-Analysis Example - Final Result

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 p 0 p
X2 p m p
X3 w 0 m

6 / 17



Analysis Soundness

For program C and mwp-matrix M3,

• Relation ⊢ C : M holds iff there exists a derivation in the calculus.

• ⊢ C : M means the calculus assigns the matrix M to the command C.

• Command C is derivable if the calculus assigns at least one matrix to it.

Theorem (Soundness)

⊢ C : M implies ⊨ C : M .

3Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”, p. 11.
7 / 17



Proving Programs

• Prove that some property holds with the strongest possible guarantee.

• Done using an interactive theorem prover.

• Construct rigorous logical arguments.

• Machine-checkable for correctness.

8 / 17



Trade-off

Mechanical proofs require specifying every detail (slow, tedious).

⇕

Get the strongest possible guarantee of correctness.

9 / 17



My Goal

□ Prove the mwp analysis technique.

• As defined in the original paper.

• Using the Coq proof assistant.

10 / 17



Steps - 1 of 4

Define the programming language under analysis.

• Simple, memory-less imperative language.

• Syntax: variables, arithmetic and boolean exp., commands.

11 / 17



Steps - 2 of 4

Define the mathematical machinery.

• Need e.g., (sparse) matrices, semi-ring.

• Other related mathematical concepts e.g., honest polynomial.

12 / 17



Steps - 3 of 4

Implementing the typing system.

• Define the flow calculus rules4.

• Define a typing system.

4There is some non-determinism in these rules
13 / 17



Steps - 4 of 4

Prove the paper lemmas and theorems.

• There are 8 lemmas and 7 theorems.

• The soundness theorem, ⊢ C : M implies ⊨ C : M , is essential.

• “These proofs are long, technical and occasionally highly nontrivial.”5

5Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”, p. 2.
14 / 17



Expected Main Result

A certified complexity analysis technique.

• Proves a positive result obtained by analysis is correct.

• Establishes certified “growth bound” on input variable values.

15 / 17



Timeline and Progress

Step 1 Step 2 Step 3 Step 4

LANGUAGE

MATRICES

TYPE SYSTEM

PROOFS

SF - V1 SF - V2

MATH COMP

FRAP

J&K PAPER

Here Proof task Study resource

16 / 17



Discussion

Many directions can follow from the correctness proof
e.g., a formally verified static analyzer.

• Our previous work: adjusting analysis makes it it practical and fast6

• Proof would show the original technique is correct, but not fast.

• It should be possible to combine those two results.

6Clément Aubert et al. “mwp-Analysis Improvement and Implementation: Realizing Implicit
Computational Complexity”. In: FSCD 2022. Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 26:1–26:23. doi: 10.4230/LIPIcs.FSCD.2022.26.

17 / 17

https://doi.org/10.4230/LIPIcs.FSCD.2022.26

