
Realizing Implicit Computational Complexity

Clément Aubert1, Thomas Rubiano2,

Neea Rusch1, Thomas Seiller2,3

1 Augusta University, USA
2 LIPN - Laboratoire d’Informatique de Paris-Nord

3 CNRS - Centre National de la Recherche Scientifique

TYPES 2022 20 June 2022



mwp-analysis

y
m p 0
0 m 0
0 0 m



1. Input program: simple, imperative

2. mwp-Calculus: inference rules

3. Matrix: assigned to commands
by the inference rules

4. Typed flows: represent variable
dependencies in matrix

Neil Jones and Lars Kristiansen. ”A Flow Calculus of mwp-Bounds for
Complexity Analysis”. ACM Trans. Comput. Logic (2009).

1 / 9



mwp-analysis

If derivation succeeds, guarantees that the values
computed by an imperative program will be

bounded by polynomials in the program’s inputs.

Neil Jones and Lars Kristiansen. ”A Flow Calculus of mwp-Bounds for
Complexity Analysis”. ACM Trans. Comput. Logic (2009).

2 / 9



mwp-Analysis: Example

Program

loop X3 {
X2 = X1 + X2;

}

blah

→

Analysis result

X1 X2 X3

X1 m p 0
X2 0 m 0
X3 0 p m

3 / 9



The many properties of mwp-analysis

• Multi-variate result

• Language-agnostic,
expressive syntax

• Compositional method

• Termination and loop
conditions have no impact

• Nondeterministic
inference rules

• Derivability problem is
NP-complete

• Pen & paper analysis

4 / 9



There were several open questions

• Powerfulness – what is the size of the class programs that
can be analyzed?

• Richness – can it be extended to analyze more commands?

• Practicality – can it be used to analyze real-world programs?

• Utility – what else can be done with this analysis?

5 / 9



The extended and improved mwp-analysis

We defined an extended and improved mwp-analysis
and created a practical implementation.

6 / 9



The extended and improved mwp-analysis – highlights

1 Improved by defining deterministic inference rules:
analysis always completes and can internally handle failure.

2 Extended the syntax richness with support for function calls,
including recursion.

3 Gained efficiency by separating computation into 2 phases:
determining if a bound exists and computing its value.

4 Our tool implementation, pymwp, supports complexity
analysis on a subset of C syntax.

7 / 9



Realizing Implicit Computation Complexity

We know ICC offers powerful analysis tools, that
can be extended in richness, and made practical.

. . . but wait, there is more!

8 / 9



Realizing Implicit Computation Complexity

We know ICC offers powerful analysis tools, that
can be extended in richness, and made practical.

. . . but wait, there is more!

8 / 9



Many other directions are being explored

performance
optimization

compiler
integrations

formal
verification

other kinds of
ICC analyses

9 / 9



Come talk to us @ TYPES 2022!

Clément Thomas R. Thomas S. Neea

Our source code – pymwp and more:

https://github.com/statycc

https://github.com/statycc

